IADC WellSharp Intro Drilling Well Control

This IADC Accredited introductory course is intended for any drilling personnel interested in understanding the basics of drilling and well control. Using modern mobile learning technologies, we believe we have created online well control training that is not only convenient and cheaper but also truly better, stronger learning and as per the newly revised Well Sharp curricula.

Buy (English): $399

Compra (Español): $199

Compra (Português): $199

 

View Driller and Supervisory Level Courses: click here.
Versión en español está disponible aquí.
Check out our IWCF course here.

Course Features

Downhole Animations and Interactive Learning
40+ downhole and equipment animations to teach every important Well Control concept! Visualize complex effects, “play” with drilling equipment, and learn through well control calculations and interactive lessons.
Anywhere, anytime, at your own pace!
Working another job? Spending all your free time on the rig? Too lazy to leave home or travel to a classroom? Take our course anytime, anywhere online on your computer, iPad, iPhone, or Android! Take the entire course in one setting or do it 10 minutes at a time. It’s all up to you.
Receive an IADC certificate of accreditation
Receive an Introductory level certificate of competency in Well Control from the International Association of Drilling Contractors (IADC). Available to print or email immediately after course completion.
Wellsharp Intro Wallet Card
Receive an Introductory level Wallet Card for the IADC WellSharp Intro Drilling Well Control course. An electronic copy is sent to your email and a physical copy is delivered to your doorstep, by Falck.

FAQ

Who should take IADC Introductory training?

This course is built for all levels of oil industry experience.

For non-technical individuals or people entering the drilling world for the first time, the course has prerequisite material sections that provide a basic Introduction to Drilling, an animated overview of fundamental Drilling Equipment, and an explanation of fundamental math and science concepts, such as Density and Pressure.

For more experienced students, the powerful downhole animations and interactive explanations of concepts such as Formation Pressure and Gas Migration can provide a powerful refresher of important material and fundamental concepts. You can't understand what is happening deep downhole unless you can visualize it!

Below is the list of Recommended Attendees:

Contractor
  • Barge Engineer
  • Captain/Master
  • Pit Hand, Pump Man, Shaker Man
  • Subsea Engineer
  • Derrickman
  • Floorman
  • Blowout Preventer (BOP)/Subsea Engineer, Lower Marine Riser Package (LMRP) Engineer, and Dynamic Positioning Officer
Contractor/Operator/Service Company

Managed Pressure Drilling (MPD)/Underbalanced Drilling (UBD) well site service personnel (non-supervisory)

Operator
  • Operator Offshore Installation Manager (OIM)
  • Onshore monitoring crew
  • Wellsite Geologist and office-based Operations Geologist
  • OIM (for installations not primarily involved with drilling)
Service Company
  • Casing Crew Supervisor
  • Cementer
  • Remotely Operated Vehicle (ROV) personnel (supervisory)
  • Mud Engineer
  • Mud Logger/Wellsite Drilling Data Engineer
  • Directional Driller
  • Fishing Tool Operators (non-pressure operations)
What will I learn?

The well control course covers all of the material and concepts as mandated by the IADC (International Association of Drilling Contractors) in their newly revised Introductory WellSharp program. The full course is twelve hours long. Topics include fundamental well pressures, fluids, gas properties, blowout prevention equipment, and well kill methods.
Scroll down to see a full list of all the modules and animations included as a part of this online well control training program.

How much does the course cost?

Please click the above button to purchase the course and see the course price. This includes access to twelve hours of Well Control lessons, Well Control quizzes, Well Control exercises, animations, and the IADC Well Control certificate.

Please email or call us to find out about any promotions or group discounts. We love hearing from our students, and we often give discounts to large groups or those in financial need!

How long do I have to finish the course?

The beauty of online well control school is that you can take the course anywhere, anytime! With the purchase of one course, you have 90 days to go through all the course material. You can work in between shifts on the rig or when you get a spare moment at home. You have 90 days to finish the well control course, but within that time you can spend as long as you would like. Why travel all the way to a classroom when you can take your well control training online? Why listen to a boring instructor for hours when you can go through an online well control school whenever you feel like it?

Will I get a Well Control certificate?

After successful completion of the course and a pass grade on our online exam, you will recieve a certificate from Falck Safety Services honoring completion of the course.

Then, after successfully passing the IADC WellSharp Exam (also online), you will receive an IADC Well Control Certificate at the Introductory level. This certificate is recognized by the vast majority of drilling contractors across the globe.



Course Curriculum

Chapter 1 Introduction to Drilling
1.1
Introduction To Drilling

A basic Introduction into the creation, exploration, and drilling of hydrocarbons. How are oil and gas formed? What are some of the techniques used to search for oil and gas? How is drilling a hole different from digging a hole?

1.2
Introduction to Offshore Drilling

1.3
Math

Provides links to valuable online Math resources to learn and refresh before you start the course.

1.4
Fluid Properties

1.5
Pressure

Examines pressure through several different, real-life examples. Introduces students to pressure differentials and the concept of equilibrium; setting the stage for later discussion on pressure in the wellbore.

Chapter 2 Introduction to Equipment
2.1
Basic Drilling Equipment

Using animation, introduces students to the basic fundamentals of the drilling process. Introduces the drill bit, drill collar, drill pipe, and derrick. Then, introduces casing pipe and the cementing process. All concepts taught and explained to be accessible to students with no prior drilling knowledge.

2.2
Mud Circulating System

Using powerful animations, introduces students to rock cuttings and walks through the necessity for drilling mud circulation to remove the cuttings from the well. Uses surface and downhole animations to walk through the entire mud circulating system. Lastly, lets students visualize equipment involved in the mud cleaning process through animation of the internal workings of the Shale Shaker and Degasser.

2.3
Mud Circulating System Subsea

2.4
Pipes & Manifolds

Uses the real-life example of a highway system to introduce valves and manifolds on a drilling rig. Walks through the definition, function, and importance of the pump, standpipe, and choke manifolds through vibrant animations. Introduces the adjustable choke and briefly goes into its importance in well control operations.

2.5
Workover & Completions

Offers an introduction into wireline, completions, and production operations. Introduces the importance of a Lubricator in effectively lowering wireline downhole. Uses animation to examine the role of a packer during the completions process. Lastly, takes a look at the importance of Test Trees and Christmas Trees in regulating well control after drilling operations have ended.

Chapter 3 Kick Theory
3.1
Blowouts

Defines the blowout and introduces the terrible consequences of an uncontrolled blowout on causing injury to personnel, loss of rig, and harm to the environment. Then, introduces the kick and examines how a kick is caused by pressure differentials and how a kick can turn into a blowout.

3.2
Formation Pressure

Offers a comprehensive look at Formation Pressure deep underground. First, introduces the concept of porosity- taking a look at formation rocks at a molecular level. Then, examines underground pressures both before and after drilling begins, taking a look at what pressures are removed during drilling operations. Lastly, examines the Formation Pressure Gradient and walks through how formation pressure can be mathematically calculated. Student must interact with and answer a question to complete lesson.

3.3
Hydrostatic Pressure

Examines the pressure exerted by a column of fluid, both in and out of the wellbore. Derives the generally accepted equation for hydrostatic pressure in a well and walks students through examples. Interactive, in-module questions require student to read, answer, and think about question while going through the lesson.

3.4
Pump Pressure

Introduces friction and examines how frictional losses act against any movement along a surface. Identifies Pump Pressure as the pressure needed to overcome the frictional losses throughout the entire system. Lastly, explains how Annular Friction Loss can contribute to bottomhole pressure.

3.5
Kick Theory

Puts together Formation Pressure and Bottomhole Pressure to examine exactly what causes a kick to occur.

3.6
U-Tube Effect

Uses animation to indicate the exact location of the U-Tube within the wellbore. Then, introduces the U-Tube effect with an example.

3.7
Lost Circulation and Fracturing

Explains the second part of Kick Theory; the consequences of letting Bottomhole Pressure become too much larger than Formation Pressure. Through animation, demonstrates how Lost Circulation can cause True Vertical Depth to fall and cause a kick to occur.

3.8
Surface Pressure

Explains the pressure felt on rig surface equipment and the consequences of exceeding the maximum surface pressure limits of well equipment. Creates an analogy to compare wellbore surface pressure with surface pressure felt on the cap of a shaken soda bottle.

Chapter 4 Fluids
4.1
Drilling Fluids

Explains the major differences and relative pros and cons of both oil based and water based drilling mud. Also, briefly explores synthetic oil based mud, cement slurry, and fluids used during the workover and completions process.

4.2
Mud Balance

Introduces the Mud Balance and Pressurized Mud Balance tests used to calculate the density of drilling mud in the rough field environment.

4.3
Gas Properties

Explains some of the most dangerous gases experienced during drilling operations, exploring the properties that make them dangerous to rig personnel. Explains the low density of gas and how it can lead to gas migration when mixed together with other liquids. Introduces Boyle’s Law and the concept of gas compressibility.

Chapter 5 Blowout Prevention System
5.1
Introducing the BOP

Conceptually introduces the BOP stack and its importance in shutting-in the well to prevent kicked fluid from reaching the surface. The differences between annular and ram preventers are discussed, using 3D animations to visually demonstrate the unique attributes of each preventer. Ram elements are discussed as well as the role of the drilling spool.

5.2
Annular and Ram Preventers

5.3
Auxiliary BOP Equipment

5.4
BOP Control systems

5.5
BOP Testing

5.6
Subsea BOP

Chapter 6 Well Control Equipment
6.1
Pressure Gauges

Introduces the pressure gauge, explaining how pressure gauges are used across the mud circulating system to measure different pressures on the surface. Specifically, examines the major pressure gauges and the pressures read during normal circulating operations. The Pump Pressure Gauge, Standpipe Pressure Gauge, Drillpipe Pressure Gauge, and Casing Pressure Gauge are all examined.

6.2
Fluid Recording

Explains the importance of fluid measurement in detecting problems in the wellbore. Introduces the Pit Level Indicator, used to measure the amount of fluid returning to the mud tanks, the Mud Return Indicator, used to measure the speed of fluid returning to the mud tanks, and the Mud Pump Stroke counter, used to count how many strokes of fluid have been pumped into the well.

6.3
Gas Control

Reiterates some of the challenges with adequately controlling gas in the well. Introduces the gas detector and its importance in detecting gaseous fluids that are invisible to the human eye. Delves into the Mud-Gas Separator, examining its limitations and the consequences of rupture and gas blow-through when its limitations may be exceeded.

6.4
Safety Valves

Explains the need to shut-in the drillpipe in addition the annulus. Introduces the Inside BOP, the Float Valve, and the Full Opening Safety Valve

6.5
Barriers

Chapter 7 Causes of Kicks
7.1
Insufficient Hydrostatic Pressure

Establishes some of the different ways that hydrostatic pressure can become lower than formation pressure, causing a kick to occur. Specifically, discusses how tripping pipe out of the well can reduce Total Vertical Depth and how the mud cleaning process can sometimes remove barite and other weighting chemicals, reducing Mud Weight.

7.2
Swabbing

Uses powerful, downhole animation to let students visualize the suction effect of Swabbing and how it can pull formation fluid upwards into the well. Introduces Swab Pressure and explains how it acts against bottomhole pressure.

7.3
Surging

Uses powerful, downhole animation to let students visualize the water hammer effect of Surging and how it can create significant downward pressure that causes fracturing or lost circulation. Introduces Surge Pressure and explains how it acts against bottomhole pressure.

7.4
Abnormally Pressured Formation

Travels back in time to introduce how faults were formed and how they created underground, abnormal pressure zones. Gives students a strong visualization of what it really means for a formation to be abnormally pressured.

7.5
Annular Gas Flow

Introduces Annular Gas Flow, explains how it can take place, and lets students visualize the dangers it creates through animation.

7.6
Intentional Kicks

Explores several intentional kicks that create situations where formation fluid enters the wellbore. Explores the drill stem test and underbalanced drilling operations.

Chapter 8 Kick Detection
8.1
Quick Response

Emphasizes the importance of responding to a kick as quickly as possible, highlighting the consequences of taking too long to respond.

8.2
Kick Indicators

Delves into the different indicators that a kick may have occurred. Introduces the Trip Tank and the role of careful trip tank monitoring in detecting a kick during tripping operations. Also, examines the Flow Check, examining the concept and procedures involved in Flow Checks during both drilling and tripping operations.

8.3
Kick Warning Signs

Introduces the warning signs that formation pressure is increasing or that we have entered an abnormally pressured formation. Examples include changes in the mud weight of returning drilling mud, increased drilling mud viscosity, and the generation of odd-shaped rock cuttings.

8.4
Subsea Kick Detection

8.5
False Kick Indicators

Chapter 9 Drilling Procedures
9.1
Tripping

Introduces the Trip Sheet and its importance in monitoring the Trip Tank during tripping operations. Walks through a specific example of pipe being pulled out of the well and the details that would be recorded on a trip sheet.

9.2
Shallow Gas Hazards

Explains how the hazards of a gas kick can be greatly exaggerated at shallow depths. Introduces the diverter, explaining how it can be used effectively in shallow well situations

9.3
Crew Drills

Chapter 10 Kick Procedures
10.1
Shut-in Concept

Provides a detailed, step-by-step conceptual understanding of the impact of well shut-in on underground pressures. Using the example of a bottle cap, explains how shutting-in the well makes bottomhole pressure automatically equal to formation pressure.

10.2
Abnormal Circulation

Introduces the abnormal circulating path, through which fluid is circulated when the well is shut-in. Examines the path of fluid flow down the drill pipe, up the annulus, and out through the HCR valve into the choke line to the adjustable choke.

10.3
Shut-in Procedure and Verification

Defines the importance procedures involved in the well shut-in process, during both drilling and tripping operations. Also explains the importance and procedure involved in verifying that the well has successfully been shut-in.

10.4
Recording Parameters

Explains the three most important parameters that need to be recorded after shut-in: Shut in Drill pipe Pressure (SIDPP), Shut in Casing Pressure (SICP), and Estimated Pit Gain. Walks through the importance of SIDPP and SICP in understanding Formation Pressure and explains why SIDPP is generally lower than SICP.

Chapter 11 Kick Methods
11.1
Constant BHP Methods

Introduces, conceptually, the importance and power of constant bottom hole pressure well kill methods. Explains how maintaining constant bottomhole pressure can prevent additional kicks, lost circulation, and surface pressure problems. Explains how turning on the Pump can increase bottomhole pressure and risk a kick, while opening the adjustable choke can reduce pressure when needed.

11.2
Kill sheet

11.3
Kill Methods

Explains the two major Kill Methods: Driller’s Method and the Wait and Weight Method- indicating the major differences, the pros and cons of each method, and the respective steps involved in properly executing each method.

Chapter 12 Conclusion
12.1
Well Control Risks